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Let K=RorC.

We consider germs of K-analytic mapping :

g (K700 — (K%, 0)
u =) = (pa(v); - en(u))

o induces a morphism of convergent power series:

o* . K{x} — K{u}
f — foyp

where v := (u1,...,Un) and x 1= (x1,...,Xpn).

Question: what can be said about Im(¢)?
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Generic and Analytic ranks

In general, Im(y) is not an analytic subset of K".

Let ¢ : (K]7,0) — (KZ,0) be a K-analytic map:

the Generic rank:  r(p) := rankFrac(K{u})(Jac(go)),

| (K{x}
AN
the Analytic rank: r(p) :=dim (Ker(w*))

@ r(y) is the topological dimension of Im(y) at a generic point
(half if K = C).
A(

@ (i) is the K-dimension of the analytic closure of Im(¢y).

Remark: r(¢) < r(yp).
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Theorem (Chevalley 43, K = C, Tarski 48, K = R)
If o : (K™, 0) — (K",0) is polynomial or algebraic, then:

Theorem (Remmert's proper mapping, 58)

Let ¢ : X — Y be a proper analytic morphism between complex
analytic spaces. Suppose that Y is reduced. Then the image p(X)
is an analytic space.
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Let
® Z(KZ,O) — (K370)

(u,v)  —  (u,uv,uve")

Then r(¢) = 2, but r*(¢) = 3 (due to the transcendance of e¥).



Osgood'’s Example (1916)

Let
® Z(KZ,O) — (K370)

(u,v)  —  (u,uv,uve")

Then r(¢) = 2, but r*(¢) = 3 (due to the transcendance of e¥).

This morphism is not proper: the whole v-axis is sent to the
origin.




Formal rank and a question of Grothendieck (1960)

Definition
Let ¢* : K{x} — K{u} be a K-analytic map.
Let ¢* : K[x] — K[u] be the extension of ¢* to the completion.

Formal rank: () := dim (Kﬁ@*))
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Formal rank and a question of Grothendieck (1960)

Definition
Let ¢* : K{x} — K{u} be a K-analytic map.
Let ¢* : K[x] — K[u] be the extension of ¢* to the completion.

K[x] )

Formal rank: r” () := dim (Ker((ﬁ*)

Remark: r(¢) < r(p) < r(p).
Question (Grothendieck, 60): Can we have r’ () < r(y)?

Gabrielov proves that the answer is yes (71). There exists a map
¥ :(C%0) — (C*0)
such that r(¢)) = 2, r” (v) = 3 and rA(y) = 4.
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Gabrielov's rank Theorem

Theorem (Gabrielov's rank Theorem)

Let ¢ : (K™ 0) — (K",0) be a K-analytic morphism germ.

©) = r(p) =r"(¢) = r(p).

Remarks:

© The result holds true for complex analytic morphisms:
2 (X)O) — (Y7O)

between singular analytic spaces, as long as (Y, 0) is reduced.

@ We can reduce the real analytic statement to the complex
analytic statement by considering a complexification.

We assume, from now on, that K = C.




History and Interest

Proofs in the literature:
@ Gabrielov, Izv. Akad. Naut. SSSR. (1973);
@ Tougeron, Lectures Notes in Math. Trento (1990);
@ Belotto, Curmi, Rond, pre-print (2020).

Applications and/or connected works:

© Study of map germs:
Eakin, Harris (1977); lzumi (1986, 1989);

@ Foliation Theory:
Malgrange (1977), Cerveau, Mattei (1982);

© Subanalytic geometry:
Bierstone, Schwarz (1982), Bierstone, Milman (1982),
Pawlucki (1990, 1992).

@ Counter-examples in real-analytic geometry:
Pawlucki (1989), Bierstone, Parusinski (2020), Belotto,
Bierstone (preprint).



Reduction to the low-dimensional case

Proposition (Reduction by contradiction)

Let ¢: (C™,0) — (C",0) be an analytic morphism such that
2 <r(p) = (p) < ().

Then there is p: (C?,0) — (C3,0) such that

r(¢) =" (p) =2 and r(p) =3.

To prove this Proposition, we use a certain number of “allowed
operations”, building the new morphism step by step.




Reduction: first step

Lemma (Blow-ups and power substitutions)
Let ¢ : (C™,0) — (C",0) be a C-analytic morphism germ.

Q Leto:(C™ 0)— (C™,0) be a (chart of a) blow-up or a
power substitution;

@ Let7:(C",0) — (C",0) be a power substitution;

Then the ranks of T o ¢ o g coincide with the ranks of .




Reduction: first step

Lemma (Blow-ups and power substitutions)
Let ¢ : (C™,0) — (C",0) be a C-analytic morphism germ.
Q Leto:(C™ 0)— (C™,0) be a (chart of a) blow-up or a
power substitution;
@ Let7:(C",0) — (C",0) be a power substitution;
Then the ranks of T o ¢ o g coincide with the ranks of .

Warning: Blow-ups in the target may change the ranks!

Using this Lemma and some classical algebra tools, we build a
morphism : (C™,0) — (C™*1,0) such that

r(e) =r" () =m, and r(p) = m+1.




Reduction of dimension (restriction to hyperplanes)

Assume that:

¢:(C™0) — (ng—»"'_']:)xmv}” 0)
is such that
() =" (¢) = m,
r(¢) = m+1and P(x,y) € C[xi, ..., xm][y] an irreducible
polynomial which generates ker(g*).



Reduction of dimension (restriction to hyperplanes)

Assume that:

¢:(C™0) — (CZ:"'_},XWY’ 0)
is such that
() =" (¢) = m,
r(¢) = m+1and P(x,y) € C[xi, ..., xm][y] an irreducible
polynomial which generates ker(g*).

Reduction (m > 2): We restrict the morphism to a sufficiently
generic hyperplane H (containing the y-axis) on the target:

Y= 90’50—1(H) : (“Pil(H)ﬂO) - (Hv 0)

such that ¢ ~%(H) is a smooth hypersurface and r(z)) = m — 1.




Reduction of dimension (Main tools)

Let H be a sufficiently generic hyperplane (in x):
Theorem (Abhyankar-Moh, 70)

If P € C[x][y] is divergent, then P|y is divergent.

Theorem (Formal Bertini Theorem, Chow 58)

Let m > 3. If P € C[x][y] is irreducible, then P|y is irreducible.




Reduction of dimension (Main tools)

Let H be a sufficiently generic hyperplane (in x):

Theorem (Abhyankar-Moh, 70)
If P € C[x][y] is divergent, then P|y is divergent.

Theorem (Formal Bertini Theorem, Chow 58)

Let m > 3. If P € C[x][y] is irreducible, then P|y is irreducible.

Then we get that P|y is a non convergent irreducible polynomial
in ker(¢*). Therefore

m—1=r()<r () <m-1.

The fact that P is irreducible and non convergent implies that
ker(¢*) = (0), therefore

r() =17 () = m—1, and r(¥) = m.




No more reductions!
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P(x1,%0,y) = y* = (4 +3)
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No more reductions!

Warning: The Formal Bertini Theorem fails if m =2, e.g.:
P(x1,%0,y) = y* = (4 +3)

is irreducible in C[x1, x2][y]-
But
VA€ (C7 P(AX27X27y) = .y2 _X22(A2 + ]')

is not irreducible in Cx2][y].
Moral: If n = 2, a priori, it could happen that:

P|H = Ql(X7y) : Q2(X7y)

is divergent, while Qg is convergent (and Q; is divergent). This in
turn could allow ker(¢*) # (0), and our argument of reduction
fails.




The “difficult case” : Low dimension rank Theorem

Theorem (Low dimension Gabrielov's rank Theorem)

Let ¢ : (C2,0) — (C3,0) be a C-analytic morphism germ.

(o) =r(p) =2 = r(p) =2

By formal Weierstrass Preparation, we can distinguish a variable

(X17 X2, .y)
so that ker(*) is generated by an irreducible polynomial:

d-1

Px,y) =y?+ > Ay, Ai(x) € Clxi, %]
i=0

Goal: Prove that P(x,y) is convergent.
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Basic case: Quasi-ordinary polynomial

Now, suppose that the discriminant A(P) is monomial, that is:
A(P) = x{" x5 - unit

By the Abhyankar-Jung Theorem, there exists k € N such that:

d
P(x,y) = H (y — & (X%/k,le/k>) , & formal power series,
i=1

and &; convergent < §; convergent, because P is irreducible. This

implies

d

1/k  1/k

H (903 =& <801/ a‘P2/ )) =0

i=1
and we conclude that one of the factors is convergent because up
to transforming ¢, we can assume @i/k = u and cp;/k = uv.
Finally, one of the £;(u, uv) is convergent, therefore &; is

convergent, and P has convergent coefficients.
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Geometrical Framework

Idea: we want to “make A(P) monomial”!
From now on, it is convenient to use geometrical notations:

aeC? Op=C{x,x}, PcO0Oy|
Given a finite sequence of blow-up and a point:
o:(N,F)— (C*a), F=o01a), beF.
We consider the “pull-back of P by o at b”. More precisely
Py =64(P) where oy : Oy — Oy,

Remark: All transformations we use are invariant by the variable y.

Definition

We say that P, has a convergent factor if there is Qp € Oy[y]
which is a factor of Pj.
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Warning: Even if P is irreducible, P, may not be irreducible.

Example: Let P = y? — (x? + x2) is irreducible in C[[x1, x2][y].

Blowup:
X1 =u
Xo = uv

P, = y? — u?(1+ v?)



A cautionary tale

Warning: Even if P is irreducible, P, may not be irreducible.
Example: Let P = y? — (x? + x2) is irreducible in C[[x1, x2][y].

Blowup:
X1 =u
{ Xo = uv
P, = y? — u?(1+ v?)

Py is not irreducible in Cllu, v][y]: if ¢*> =1+ v2, then

Py = (y — up)(y + up).




Overarching inductive framework

Overarching framework ():
Let a € C? and P € O,[y] be non-constant reduced and monic.
Consider a sequence of point blow-up
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set 0 := 071 0---00,, and assume that :
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Overarching framework ():
Let a € C? and P € O,[y] be non-constant reduced and monic.
Consider a sequence of point blow-up

(C27a) = (N07u)$1(N17F1)%02‘ : %"r (Nr,Fr)
set 0 := 071 0---00,, and assume that :

o1 (Ap) is monomial Vb € o (a)



Overarching inductive framework

Overarching framework ():
Let a € C? and P € O,[y] be non-constant reduced and monic.
Consider a sequence of point blow-up

(C2%,a) = (No, a) <~ (N1, F1) <~ < or (N,, F,)
set 0 := 071 0---00,, and assume that :
o1 (Ap) is monomial Vb € o (a)
For the induction scheme, it is useful to keep track of the history:
Fr=FYu---ur"

where F,U) is the exceptional divisor which appeared at time j.
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Proposition (Inductive scheme)

Under framework (x), assume that 3¢ € F, such that P, has a
convergent factor. Then P admits a convergent factor.

Proof of Low-dimensional Gabrielov:
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Inductive Scheme

Proposition (Inductive scheme)

Under framework (x), assume that 3¢ € F, such that P has a
convergent factor. Then P admits a convergent factor.

Proof of Low-dimensional Gabrielov:

@ Blowups in the target

(9017992>
((CQ,O) —_— e Q€ (CQ until O'*(AP) iS
monomial
T o @ Blowups and power
substitutions in the
U source to lift
' D @ P, is quasi-ordinary

F

It is enough to use the Quasi-ordinary case and the Proposition.
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Under framework (x), assume that Jc € FY such that P. has a
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Main technical tool : Semi-global extension

To prove the inductive scheme, we use:

Proposition (Semi-Global extension)

Under framework (x), assume that Jc € FY such that P. has a
convergent factor. Then, there exists:

@ an open neighborhood Ut of FY;
@ a convergent polynomial q € OUSI) [y]-

such that q divides Py, at every point b € Fr(l).

G




Proof of the inductive scheme

We prove the inductive scheme by induction on the lexicographical
order of (r, k).

Note that if r = 1, we simply need the following classical

Let o: (N,F) — (C2,0) be the blow up of the origin, and let
h: U — C be an analytic function, where U is a neighbourhood of
F.




Proof of the inductive scheme

We prove the inductive scheme by induction on the lexicographical
order of (r, k).

Note that if r = 1, we simply need the following classical

Let o: (N,F) — (C2,0) be the blow up of the origin, and let
h: U — C be an analytic function, where U is a neighbourhood of
F. Then there is f: (C2,0) — (C,0) analytic such that h=foo.
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Proof of the inductive scheme, Step I: k =1

° Pji= (a)jj(P) verifies our conditions after r — 1 blow ups.



Proof of the inductive scheme, Step I: k =1

° Pji= (a)ﬁj(P) verifies our conditions after r — 1 blow ups.
@ We get a convergent factor of (01)*(P) on a neighbourhood
of Fl(l), hence a convergent factor of P.
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Proof of the inductive scheme, Step Il: kK > 1

-1 ¢
(4)
Bl A

@ Pj:= (0107 00k_1)i_,(P) verifies our conditions after
r—k-+1 < r blow ups.



Proof of the inductive scheme, Step Il: kK > 1

@ Pj:= (0107 00k_1)i_,(P) verifies our conditions after
r—k-+1 < r blow ups.

@ We obtain a convergent factor at a point cy) of Fr(j), for some
j< k-1
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Semi-global extension: Recall

Gabrielov’s rank
Theorem
‘/‘\
Low-dimension
Gabrielov
/H
Inductive scheme &

Quasi-ordinary case
‘/‘\

Semi-global extension

Proposition (Semi-Global extension)

Under framework (x), assume that Jc € FY
such that P, has a convergent factor. Then,
there exists:

© an open neighborhood USI) of Fr(l);

@ a convergent polynomial q € OU(I) [y].

such that q divides Py, at every point b € Fr(l).
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The proof has two main steps:

Newton-Puiseux-Eisenstein parametrization:
@ Projective rings;

@ Newton-Puiseux-Eisenstein Theorem.



Overview

The proof has two main steps:

Newton-Puiseux-Eisenstein parametrization:
@ Projective rings;

@ Newton-Puiseux-Eisenstein Theorem.

Local-to-Semi-global convergence of factors:
@ Projective convergent rings;
@ Local to Projective convergence of factors;

© Semi-global formal extension.
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Projective Ring: Motivation

We want to get a sub-ring Pp[x] of C[x] such that:
If

P = H Qi(va)
i=1

and the Q;'s are irreducible in Py[x][y], then
o Forallbe FV, Qip € (/Q\b[y] (Note that a priori Q; ¢ (/’)\a[y])
o If Qjp has a convergent factor, then Q;, is convergent

e Finally, if Q;, is convergent for some point b € Fr(l), then it is
for every b € Fr(l).
= If Py has a convergent factor for some b € Fr(l) then one of the
Qjp is convergent, and Q;. provides a convergent factor of P, at
every ¢ € Fr(l).



Projective Ring: Preliminary

Denote by v the (x)-adic valuation on C[[x]. We consider the
valuation ring V,, associated to it (and its completion V,,), that is

Vi, :={f/g|f,g€C[x], v(f) = v(g)}



Projective Ring: Preliminary

Denote by v the (x)-adic valuation on C[[x]. We consider the
valuation ring V,, associated to it (and its completion V,,), that is

Vi, :={f/g|f,g€C[x], v(f) = v(g)}

Remark: After one blow-up o(u, v) = (u, uv):

f Wi u(Of
eV, = ot (=) =—nr
g g) uleg

and o* (g) is well-defined outside the strict transform of (g = 0).




Projective Ring

Let h be a homogeneous polynomial.

Definition (Projective ring)

We denote by Pp[x] the subring of V,, characterized as follows:
A € Pp[x] if there exists o, 5 € N and a sequence of polynomials
(ak)ken so that:

A== hak+ﬁ’ where  v(ax) — v(h***7) = k,
k>0




Projective Ring

Let h be a homogeneous polynomial.

Definition (Projective ring)

We denote by Pp[x] the subring of V,, characterized as follows:
A € Pp[x] if there exists o, 5 € N and a sequence of polynomials
(ak)ken so that:

A== hak+ﬁ’ where  v(ax) — v(h***7) = k,
k>0

And we denote by Py{x} the subring of P[x] characterized by:
Ac Ph{X} if
> au(x) € C{x}.

k=0




Integral homogeneous elements

Remark: In order to describe the roots of
P(x,y) =y>— (¢ +x3)

we need to add the element:

v = 1/x3 + x3, which is a root of ['(x,2) = 22 — (>} +3)

Definition

An integral homogeneous element « is an element of C(x),
satisfying a relation of the form

M(x,v)=0

where I'(x, z) is a weighted homogeneous polynomial monic in z.

V.




Newton-Puiseux-Eisenstein Theorem

Theorem (Newton-Puiseux-Eisenstein factorization (simplified))

Let P € C[x][y] be a monic polynomial. There exists an integral
homogeneous element ~, and a homogeneous polynomial h(x),
such that:

P(X,y):HQi(X,_}/) (1)
i=1

where
Q the Qi € Py[x][y] are irreducible in V,[y];




Newton-Puiseux-Eisenstein Theorem

Theorem (Newton-Puiseux-Eisenstein factorization (simplified))

Let P € C[x][y] be a monic polynomial. There exists an integral
homogeneous element ~, and a homogeneous polynomial h(x),
such that:

ri

Pi,y)=[[Qxy), Qxy)=]l0v-&%) @
—1 j=1
where
Q the Qi € Py[x][y] are irreducible in V,[y];

Q for fixed i, the &jj € Py[x][] can be obtained from one
another by replacing vy by one of its conjugates.




Semi-global formal extension (simplified)

Under framework (), let A € Pp[x]. Fix b € F\Y.
We say that A extends formally (resp. analytically) at b if the
composition Ay := 7 (A) belongs to Oy (resp. Oy).



Semi-global formal extension (simplified)

Under framework (%), let A € Pp[x]. Fix b € FY.

We say that A extends formally (resp. analytically) at b if the
composition Ay := 7 (A) belongs to Oy (resp. Oy).

Theorem (Semi-global formal extension (simplified))

Under framework (x), let P(x,y) € C[x][y] be a monic reduced
polynomial, and consider the factorization given in (1):

P(x,y) = HQi(va)
i=1

The polynomials Q; extend formally at every point b € Fr(l).
Furthermore, this extension is analytic if and only if Q; € Pp{x}[y].




Local to Projective convergence of factors

Theorem (Local to Projective convergence of factors)

Under framework (%), suppose that there exists a point ¢ € F

such that P, admits a convergent factor. Then, there exists i such
that Q; € Pp{x}[y].
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Theorem (Local to Projective convergence of factors)

Under framework (%), suppose that there exists a point ¢ € F

such that P, admits a convergent factor. Then, there exists i such
that Q; € Pp{x}[y].

Difficulty: In the above setting, we have that:

o2(@) = [ Ri(x.y) € Ouly]

j=1

where Rjj(x,y) € O.[y]; and one of them is convergent.



Local to Projective convergence of factors

Theorem (Local to Projective convergence of factors)

Under framework (x), suppose that there exists a point ¢ € F,(l)
such that P, admits a convergent factor. Then, there exists i such
that Q; € Pp{x}[y].

Difficulty: In the above setting, we have that:
si
0:(Q) = [[ Ri(x,y) € Ocly]
j=1
where Rjj(x,y) € O.[y]; and one of them is convergent.

Key point: All roots of Q; belong to Py[x,~] and are related
through an irreducible (weighted) homogeneous polynomial
I'(x, z): the minimal polynomial of .
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Under framework (x), suppose that there exists a point ¢ € F,(l)
such that P, admits a convergent factor. Then, there exists i such
that Q; € Pp{x}[y].

Difficulty: In the above setting, we have that:

o2(@) = [ Ri(x.y) € Ouly]

j=1
where Rjj(x,y) € O.[y]; and one of them is convergent.

Key point: All roots of Q; belong to Py[x,~] and are related
through an irreducible (weighted) homogeneous polynomial
I'(x, z): the minimal polynomial of .

Then ¢} (Q;) is convergent



Local to Projective convergence of factors

Theorem (Local to Projective convergence of factors)

Under framework (x), suppose that there exists a point ¢ € F,(l)
such that P, admits a convergent factor. Then, there exists i such
that Q; € Pp{x}[y].

Difficulty: In the above setting, we have that:

o2(@) = [ Ri(x.y) € Ouly]

j=1
where Rjj(x,y) € O.[y]; and one of them is convergent.

Key point: All roots of Q; belong to Py[x,~] and are related
through an irreducible (weighted) homogeneous polynomial
I'(x, z): the minimal polynomial of .

Then o(Q)) is convergent, so Q; € Pp{x}[y], then finally o}(Q;)
is a convergent factor of P, at every ¢ € Fr(l).



Thank you for your attention!



