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Preliminary

Let K = R or C.

We consider germs of K-analytic mapping :

ϕ : (Km
u , 0) −→ (Kn

x , 0)
u 7→ ϕ(u) = (ϕ1(u), . . . , ϕn(u))

ϕ induces a morphism of convergent power series:

ϕ∗ : K{x} −→ K{u}
f 7→ f ◦ ϕ

where u := (u1, . . . , um) and x := (x1, . . . , xn).

Question: what can be said about Im(ϕ)?
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Generic and Analytic ranks

In general, Im(ϕ) is not an analytic subset of Kn.

Definition

Let ϕ : (Km
u , 0) −→ (Kn

x , 0) be a K-analytic map:

the Generic rank: r(ϕ) := rankFrac(K{u})(Jac(ϕ)),

the Analytic rank: rA(ϕ) := dim

(
K{x}

Ker(ϕ∗)

)

r(ϕ) is the topological dimension of Im(ϕ) at a generic point
(half if K = C).

rA(ϕ) is the K-dimension of the analytic closure of Im(ϕ).

Remark: r(ϕ) 6 rA(ϕ).



Generic and Analytic ranks

In general, Im(ϕ) is not an analytic subset of Kn.

Definition

Let ϕ : (Km
u , 0) −→ (Kn

x , 0) be a K-analytic map:

the Generic rank: r(ϕ) := rankFrac(K{u})(Jac(ϕ)),

the Analytic rank: rA(ϕ) := dim

(
K{x}

Ker(ϕ∗)

)
r(ϕ) is the topological dimension of Im(ϕ) at a generic point
(half if K = C).

rA(ϕ) is the K-dimension of the analytic closure of Im(ϕ).

Remark: r(ϕ) 6 rA(ϕ).



Classical results

Theorem (Chevalley 43, K = C, Tarski 48, K = R)

If ϕ : (Km, 0) −→ (Kn, 0) is polynomial or algebraic, then:

r(ϕ) = rA(ϕ)

Theorem (Remmert’s proper mapping, 58)

Let ϕ : X → Y be a proper analytic morphism between complex
analytic spaces. Suppose that Y is reduced. Then the image ϕ(X )
is an analytic space.
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Osgood’s Example (1916)

Let
ϕ :(K2, 0) −→ (K3, 0)

(u, v) 7→ (u, uv , uvev )

Then r(ϕ) = 2, but rA(ϕ) = 3 (due to the transcendance of ev ).

This morphism is not proper: the whole v -axis is sent to the
origin.
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Formal rank and a question of Grothendieck (1960)

Definition

Let ϕ∗ : K{x} −→ K{u} be a K-analytic map.
Let ϕ̂∗ : KJxK −→ KJuK be the extension of ϕ∗ to the completion.

Formal rank: rF (ϕ) := dim

(
KJxK

Ker(ϕ̂∗)

)

Remark: r(ϕ) 6 rF (ϕ) 6 rA(ϕ).

Question (Grothendieck, 60): Can we have rF (ϕ) < rA(ϕ)?

Gabrielov proves that the answer is yes (71). There exists a map

ψ :(C2, 0) −→ (C4, 0)

such that r(ψ) = 2, rF (ψ) = 3 and rA(ψ) = 4.
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Gabrielov’s rank Theorem

Theorem (Gabrielov’s rank Theorem)

Let ϕ : (Km, 0) −→ (Kn, 0) be a K-analytic morphism germ.

r(ϕ) = rF (ϕ) =⇒ r(ϕ) = rF (ϕ) = rA(ϕ).

Remarks:

1 The result holds true for complex analytic morphisms:

ϕ : (X , 0) −→ (Y , 0)

between singular analytic spaces, as long as (Y , 0) is reduced.

2 We can reduce the real analytic statement to the complex
analytic statement by considering a complexification.

We assume, from now on, that K = C.
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Reduction to the low-dimensional case

Proposition (Reduction by contradiction)

Let ϕ : (Cm, 0)→ (Cn, 0) be an analytic morphism such that

2 6 r(ϕ) = rF (ϕ) < rA(ϕ).

Then there is ϕ : (C2, 0)→ (C3, 0) such that

r(ϕ) = rF (ϕ) = 2 and rA(ϕ) = 3.

To prove this Proposition, we use a certain number of “allowed
operations”, building the new morphism step by step.



Reduction: first step

Lemma (Blow-ups and power substitutions)

Let ϕ : (Cm, 0) −→ (Cn, 0) be a C-analytic morphism germ.

1 Let σ : (Cm, 0)→ (Cm, 0) be a (chart of a) blow-up or a
power substitution;

2 Let τ : (Cn, 0)→ (Cn, 0) be a power substitution;

Then the ranks of τ ◦ ϕ ◦ σ coincide with the ranks of ϕ.

Warning: Blow-ups in the target may change the ranks!

Using this Lemma and some classical algebra tools, we build a
morphism ϕ : (Cm, 0)→ (Cm+1, 0) such that

r(ϕ) = rF (ϕ) = m, and rA(ϕ) = m + 1.
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Reduction of dimension (restriction to hyperplanes)

Assume that:
ϕ : (Cm, 0) −→ (Cm+1

x1,··· ,xm,y , 0)

is such that
r(ϕ) = rF (ϕ) = m,

rA(ϕ) = m + 1 and P(x , y) ∈ CJx1, . . . , xmK[y ] an irreducible
polynomial which generates ker(ϕ̂∗).

Reduction (m > 2): We restrict the morphism to a sufficiently
generic hyperplane H (containing the y -axis) on the target:

ψ := ϕ|ϕ−1(H) : (ϕ−1(H), 0)→ (H, 0)

such that ϕ−1(H) is a smooth hypersurface and r(ψ) = m − 1.
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Reduction of dimension (Main tools)

Let H be a sufficiently generic hyperplane (in x):

Theorem (Abhyankar-Moh, 70)

If P ∈ CJxK[y ] is divergent, then P|H is divergent.

Theorem (Formal Bertini Theorem, Chow 58)

Let m > 3. If P ∈ CJxK[y ] is irreducible, then P|H is irreducible.

Then we get that P|H is a non convergent irreducible polynomial
in ker(ψ̂∗). Therefore

m − 1 = r(ψ) 6 rF (ψ) 6 m − 1.

The fact that P is irreducible and non convergent implies that
ker(ψ∗) = (0), therefore

r(ψ) = rF (ψ) = m − 1, and rA(ψ) = m.
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No more reductions!

Warning: The Formal Bertini Theorem fails if m = 2, e.g.:

P(x1, x2, y) = y2 − (x2
1 + x2

2 )

is irreducible in CJx1, x2K[y ].

But
∀λ ∈ C,P(λx2, x2, y) = y2 − x2

2 (λ2 + 1)

is not irreducible in CJx2K[y ].
Moral: If n = 2, a priori, it could happen that:

P|H = Q1(x , y) · Q2(x , y)

is divergent, while Q1 is convergent (and Q2 is divergent). This in
turn could allow ker(ψ∗) 6= (0), and our argument of reduction
fails.
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The “difficult case” : Low dimension rank Theorem

Theorem (Low dimension Gabrielov’s rank Theorem)

Let ϕ : (C2, 0) −→ (C3, 0) be a C-analytic morphism germ.

r(ϕ) = rF (ϕ) = 2 =⇒ rA(ϕ) = 2.

By formal Weierstrass Preparation, we can distinguish a variable

(x1, x2, y)

so that ker(ϕ̂∗) is generated by an irreducible polynomial:

P(x , y) = yd +
d−1∑
i=0

Ai (x)y i , Ai (x) ∈ CJx1, x2K.

Goal: Prove that P(x , y) is convergent.



Basic case: Quasi-ordinary polynomial

Now, suppose that the discriminant ∆(P) is monomial, that is:

∆(P) = xα1
1 xα2

2 · unit

By the Abhyankar-Jung Theorem, there exists k ∈ N such that:

P(x , y) =
d∏

i=1

(
y − ξi

(
x

1/k
1 , x

1/k
2

))
, ξi formal power series,

and ξi convergent ⇔ ξj convergent, because P is irreducible. This
implies

d∏
i=1

(
ϕ3 − ξi

(
ϕ

1/k
1 , ϕ

1/k
2

))
= 0

and we conclude that one of the factors is convergent because up

to transforming ϕ, we can assume ϕ
1/k
1 = u and ϕ

1/k
2 = uv .

Finally, one of the ξi (u, uv) is convergent, therefore ξi is
convergent, and P has convergent coefficients.
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Geometrical Framework

Idea: we want to “make ∆(P) monomial”!
From now on, it is convenient to use geometrical notations:

a ∈ C2, Oa = C{x1, x2}, P ∈ Ôa[y ]

Given a finite sequence of blow-up and a point:

σ : (N,F )→ (C2, a), F = σ−1(a), b ∈ F .

We consider the “pull-back of P by σ at b”. More precisely

Pb = σ̂∗b(P) where σ̂∗b : Ôa → Ôb.

Remark: All transformations we use are invariant by the variable y .

Definition

We say that Pb has a convergent factor if there is Qb ∈ Ob[y ]
which is a factor of Pb.
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Remark: All transformations we use are invariant by the variable y .

Definition

We say that Pb has a convergent factor if there is Qb ∈ Ob[y ]
which is a factor of Pb.



Geometrical Framework

Idea: we want to “make ∆(P) monomial”!
From now on, it is convenient to use geometrical notations:

a ∈ C2, Oa = C{x1, x2}, P ∈ Ôa[y ]
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A cautionary tale

Warning: Even if P is irreducible, Pb may not be irreducible.

Example: Let P = y2 − (x2
1 + x2

2 ) is irreducible in CJx1, x2K[y ].
Blowup: {

x1 = u
x2 = uv

Pb = y2 − u2(1 + v2)

Pb is not irreducible in CJu, vK[y ]: if ϕ2 = 1 + v2, then

Pb = (y − uϕ)(y + uϕ).
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Overarching inductive framework

Overarching framework (∗):
Let a ∈ C2 and P ∈ Ôa[y ] be non-constant reduced and monic.
Consider a sequence of point blow-up

(C2, a) = (N0, a) (N1,F1)σ1

oo · · ·σ2

oo (Nr ,Fr )σr
oo

set σ := σ1 ◦ · · · ◦ σr , and assume that :

σ̂∗b(∆P) is monomial ∀ b ∈ σ−1(a)

For the induction scheme, it is useful to keep track of the history:

Fr = F
(1)
r ∪ · · · ∪ F

(r)
r

where F
(j)
r is the exceptional divisor which appeared at time j .
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(1)
r ∪ · · · ∪ F

(r)
r

where F
(j)
r is the exceptional divisor which appeared at time j .



Inductive Scheme

Proposition (Inductive scheme)

Under framework (∗), assume that ∃c ∈ Fr such that Pc has a
convergent factor. Then P admits a convergent factor.

Proof of Low-dimensional Gabrielov:

(C2
; 0) a 2 C

2
('1; '2)

Blowups in the target
until σ∗(∆P) is
monomial

Blowups and power
substitutions in the
source to lift ϕ

Pc is quasi-ordinary

It is enough to use the Quasi-ordinary case and the Proposition.
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Main technical tool : Semi-global extension

To prove the inductive scheme, we use:

Proposition (Semi-Global extension)

Under framework (∗), assume that ∃c ∈ F
(1)
r such that Pc has a

convergent factor.

Then, there exists:

1 an open neighborhood U
(1)
r of F

(1)
r ;

2 a convergent polynomial q ∈ O
U

(1)
r

[y ].

such that q divides Pb, at every point b ∈ F
(1)
r .

F
(1)
r

c
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Proof of the inductive scheme

We prove the inductive scheme by induction on the lexicographical
order of (r , k).

Note that if r = 1, we simply need the following classical

Lemma

Let σ : (N,F )→ (C2, 0) be the blow up of the origin, and let
h : U → C be an analytic function, where U is a neighbourhood of
F .

Then there is f : (C2, 0)→ (C, 0) analytic such that h = f ◦ σ.

U

CC
2

h
σ
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Proof of the inductive scheme, Step I: k = 1

a

c

F
(l)
r F

(j)
r

F
(1)
r

σ

Pj := (σ̂1)∗aj (P) verifies our conditions after r − 1 blow ups.

We get a convergent factor of (σ1)∗(P) on a neighbourhood

of F
(1)
1 , hence a convergent factor of P.
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Proof of the inductive scheme, Step II: k > 1

a

c

F
(k)
r

σ

Pj := ( ̂σ1 ◦ · · · ◦ σk−1)∗ak−1
(P) verifies our conditions after

r − k + 1 < r blow ups.

We obtain a convergent factor at a point c
(j)
r of F

(j)
r , for some

j 6 k − 1.
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Semi-global extension: Recall

Semi-global extension

Low-dimension

Gabrielov's rank
Theorem

Gabrielov

Quasi-ordinary case
Inductive scheme &

Proposition (Semi-Global extension)
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Overview

The proof has two main steps:

Newton-Puiseux-Eisenstein parametrization:

1 Projective rings;

2 Newton-Puiseux-Eisenstein Theorem.

Local-to-Semi-global convergence of factors:

1 Projective convergent rings;

2 Local to Projective convergence of factors;

3 Semi-global formal extension.
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Projective Ring: Motivation

We want to get a sub-ring PhJxK of CJxK such that:
If

P =
s∏

i=1

Qi (x , y)

and the Qi ’s are irreducible in PhJxK[y ], then

For all b ∈ F
(1)
r , Qi b ∈ Ôb[y ] (Note that a priori Qi /∈ Ôa[y ]).

If Qi b has a convergent factor, then Qi b is convergent

Finally, if Qi b is convergent for some point b ∈ F
(1)
r , then it is

for every b ∈ F
(1)
r .

⇒ If Pb has a convergent factor for some b ∈ F
(1)
r then one of the

Qi b is convergent, and Qi c provides a convergent factor of Pc at

every c ∈ F
(1)
r .
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Projective Ring: Preliminary

Denote by ν the (x)-adic valuation on CJxK. We consider the
valuation ring Vν associated to it (and its completion V̂ν), that is

Vν := {f /g | f , g ∈ CJxK, ν(f ) > ν(g)}.

Remark: After one blow-up σ(u, v) = (u, uv):

f

g
∈ Vν =⇒ σ∗

(
f

g

)
=

uν(f )f̃

uν(g)g̃

and σ∗
(

f
g

)
is well-defined outside the strict transform of (g = 0).
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Projective Ring

Let h be a homogeneous polynomial.

Definition (Projective ring)

We denote by PhJxK the subring of V̂ν characterized as follows:
A ∈ PhJxK if there exists α, β ∈ N and a sequence of polynomials
(ak)k∈N so that:

A =
∑
k>0

ak(x)

hαk+β
, where ν(ak)− ν(hαk+β) = k,

And we denote by Ph{x} the subring of PhJxK characterized by:
A ∈ Ph{x} if ∑

k>0

ak(x) ∈ C{x}.



Projective Ring

Let h be a homogeneous polynomial.

Definition (Projective ring)

We denote by PhJxK the subring of V̂ν characterized as follows:
A ∈ PhJxK if there exists α, β ∈ N and a sequence of polynomials
(ak)k∈N so that:

A =
∑
k>0

ak(x)

hαk+β
, where ν(ak)− ν(hαk+β) = k,

And we denote by Ph{x} the subring of PhJxK characterized by:
A ∈ Ph{x} if ∑

k>0

ak(x) ∈ C{x}.



Integral homogeneous elements

Remark: In order to describe the roots of

P(x , y) = y2 − (x3
1 + x3

2 )

we need to add the element:

γ =
√
x3

1 + x3
2 , which is a root of Γ(x , z) = z2 − (x3

1 + x3
2 )

Definition

An integral homogeneous element γ is an element of C(x),
satisfying a relation of the form

Γ(x , γ) = 0

where Γ(x , z) is a weighted homogeneous polynomial monic in z .



Newton-Puiseux-Eisenstein Theorem

Theorem (Newton-Puiseux-Eisenstein factorization (simplified))

Let P ∈ CJxK[y ] be a monic polynomial. There exists an integral
homogeneous element γ, and a homogeneous polynomial h(x),
such that:

P(x , y) =
s∏

i=1

Qi (x , y)

, Qi (x , y) =

ri∏
j=1

(y − ξij)

(1)

where

1 the Qi ∈ PhJxK[y ] are irreducible in V̂ν [y ];

2 for fixed i , the ξij ∈ PhJxK[γ] can be obtained from one
another by replacing γ by one of its conjugates.
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Semi-global formal extension (simplified)

Under framework (∗), let A ∈ PhJxK. Fix b ∈ F
(1)
r .

We say that A extends formally (resp. analytically) at b if the
composition Ab := σ̂∗b(A) belongs to Ôb (resp. Ob).

Theorem (Semi-global formal extension (simplified))

Under framework (∗), let P(x , y) ∈ CJxK[y ] be a monic reduced
polynomial, and consider the factorization given in (1):

P(x , y) =
s∏

i=1

Qi (x , y)

The polynomials Qi extend formally at every point b ∈ F
(1)
r .

Furthermore, this extension is analytic if and only if Qi ∈ Ph{x}[y ].
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Local to Projective convergence of factors

Theorem (Local to Projective convergence of factors)

Under framework (∗), suppose that there exists a point c ∈ F
(1)
r

such that Pc admits a convergent factor. Then, there exists i such
that Qi ∈ Ph{x}[y ].

Difficulty: In the above setting, we have that:

σ∗c (Qi ) =

si∏
j=1

Rij(x , y) ∈ Ôc[y ]

where Rij(x , y) ∈ Ôc[y ]; and one of them is convergent.

Key point: All roots of Qi belong to PhJx , γK and are related
through an irreducible (weighted) homogeneous polynomial
Γ(x , z): the minimal polynomial of γ.
Then σ∗c (Qi ) is convergent, so Qi ∈ Ph{x}[y ], then finally σ∗c (Qi )

is a convergent factor of Pc at every c ∈ F
(1)
r .
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Thank you for your attention!


